3.5.9 \(\int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx\) [409]

Optimal. Leaf size=94 \[ \frac {2 \sqrt {-b} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}} \]

[Out]

2*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(e*x+d)^(1/2)/c^(1/
2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {729, 113, 111} \begin {gather*} \frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\text {ArcSin}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/Sqrt[b*x + c*x^2],x]

[Out]

(2*Sqrt[-b]*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)]
)/(Sqrt[c]*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2])

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 113

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x]*(Sqrt[
1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])), Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 729

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]), Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx &=\frac {\left (\sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{\sqrt {b x+c x^2}}\\ &=\frac {\left (\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{\sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}\\ &=\frac {2 \sqrt {-b} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.63, size = 121, normalized size = 1.29 \begin {gather*} -\frac {2 \left (c+\frac {b}{x}\right ) \sqrt {x} \sqrt {d+e x} \left (-\sqrt {x}+\frac {d \sqrt {1+\frac {d}{e x}} E\left (\sin ^{-1}\left (\frac {\sqrt {-\frac {d}{e}}}{\sqrt {x}}\right )|\frac {b e}{c d}\right )}{\sqrt {-\frac {d}{e}} \sqrt {1+\frac {b}{c x}} \left (e+\frac {d}{x}\right )}\right )}{c \sqrt {x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/Sqrt[b*x + c*x^2],x]

[Out]

(-2*(c + b/x)*Sqrt[x]*Sqrt[d + e*x]*(-Sqrt[x] + (d*Sqrt[1 + d/(e*x)]*EllipticE[ArcSin[Sqrt[-(d/e)]/Sqrt[x]], (
b*e)/(c*d)])/(Sqrt[-(d/e)]*Sqrt[1 + b/(c*x)]*(e + d/x))))/(c*Sqrt[x*(b + c*x)])

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 121, normalized size = 1.29

method result size
default \(-\frac {2 \sqrt {e x +d}\, \sqrt {x \left (c x +b \right )}\, \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b \left (b e -c d \right )}{c^{2} x \left (c e \,x^{2}+b e x +c d x +b d \right )}\) \(121\)
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (\frac {2 d b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}+\frac {2 e b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) \EllipticE \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(322\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*(e*x+d)^(1/2)*(x*(c*x+b))^(1/2)*((c*x+b)/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c
*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*(b*e-c*d)/c^2/x/(c*e*x^2+b*e*x+c*d*x+b*d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x*e + d)/sqrt(c*x^2 + b*x), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.74, size = 287, normalized size = 3.05 \begin {gather*} \frac {2 \, {\left ({\left (2 \, c d - b e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right ) - 3 \, c^{\frac {3}{2}} e^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right )\right )} e^{\left (-1\right )}}{3 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

2/3*((2*c*d - b*e)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*
c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c) - 3*c^(3/
2)*e^(3/2)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*
b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(
2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c)))*e^(-1
)/c^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d + e x}}{\sqrt {x \left (b + c x\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/sqrt(x*(b + c*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x*e + d)/sqrt(c*x^2 + b*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {d+e\,x}}{\sqrt {c\,x^2+b\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(b*x + c*x^2)^(1/2),x)

[Out]

int((d + e*x)^(1/2)/(b*x + c*x^2)^(1/2), x)

________________________________________________________________________________________